Zastoupení a míchání aditivních barev. Promítání základních barev světla na obrazovku ukazuje aditivní barvy kdy se dvě překrývají; kombinace všech tří - červené, zelené a modré v odpovídající intenzitě vytváří bílou. RGB barevný model je aditivní barevný model, ve kterém je smícháno společně červené, zelené a modré světlo různými cestami k reprodukci obsáhlého pole barev. Název modelu pochází z počátečních písmen tří aditivních primárních barev – červené, zelené a modré. Název RGBA je použit k označení červené, zelené, modré a Alpha kanálu. Toto není rozdílový barevný model, ale reprezentativní. Alpha kanál je použit pro průhlednost. RGB model sám o sobě nedefinuje co je míněno červenou, modrou a zelenou kolorometricky, a tak výsledek smíchaní složek není přesný, ale relativní. Když bude přesně definována chromatičnost barevných složek, potom se barevný model stává absolutním barevným prostorem, takovým jako sRGB nebo Adobe RGB, viz RGB barevný prostor. Tento článek diskutuje o společném systému všech rozdílových barevných prostorů, které používají RGB barevný model užitý v nějaké metodě nebo nějaké historické, v barevné podobě produkované, elektronické technologii.
Každá barva je udána mohutností tří základních barev – komponent (červené - red, zelené – green a modré – blue, odtud RGB). Základní barvy mají vlnové délky 630, 530 a 450 nm. Mohutnost se udává buď v procentech (dekadický způsob) nebo podle použité barevné hloubky jako určitý počet bitů vyhrazených pro barevnou komponentu (pro 8 bitů na komponentu je rozsah hodnot 0 – 255, pro 16 bitů na komponentu je rozsah hodnot 0 – 65535), přičemž čím větší je mohutnost, tím s vyšší intenzitou se barva komponenty zobrazuje.
Model RGB je možné zobrazit jako krychli, ve které každá z kolmých hran udává škálu mohutností barevných složek. Potom libovolný bod se souřadnicemi (r,g,b) v této krychli udává hodnotu výsledné barvy.
Aditivní barvy
Výběr ze základních barev souvisí s fyziologií lidského oka; dobré primární částice jsou podněty, které zvětšují rozdíl mezi reakcemi kuželových buněk lidské sítnice na světlo o různých vlnových délkách, a tím tvoří rozsáhlý barevný trojúhelník.
Běžné tři druhy světlo-citlivosti fotoreceptoru (citlivá nervová zakončení reagující na světlo) na lidské oko (kuželová buňka) odpovídá často žluté (dlouhým vlnám nebo L), zelené (středně nebo M) a fialové (krátké nebo S) světlo (a to vrchol vlnové délky blížící se 570 nm, 540 nm a 440 nm).
Rozdíly tří druhů přijímaných signálů dovolují mozku rozlišit široké škály různých barev, ačkoli bývají většinou velmi citlivé na žlutozelené světlo a na rozdíly mezi hodnotou posunu v zelenooranžovém poli. Jako příklad, lze předpokládat že světlo v rozsahu oranžové barvy o vlnové délce (577 nm do 597 nm) vstupuje do oka a dopadá na sítnici. Světlo těchto vlnových délek může aktivovat čípky sítnice, které jsou citlivé na střední a dlouhé vlnové délky, ale ne rovnoměrně – buňky reagující na dlouhé vlny odpovídají více. Rozdíly v odpovědích mohou být detekovány mozkem a spojeny s tím, že světlo je „oranžové“. V tomto smyslu oranžový vjem objektu je jednoduchý výsledek vstupu světla objektu do našich očí který stimuluje důležité druhy čípků současně, ale v různých stupních.
Použití tří primárních barev není dostatečné k tomu, aby reprodukovalo všechny barvy, pouze barvy uvnitř trojúhelníku definovaného souřadnicemi primárních částic mohou byt reprodukovány aditivním mícháním nezáporného množství tohoto barevného světla.
Míchání barev |
Žádné komentáře:
Okomentovat